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REGULAR ARTICLE

Deep learning models to study sentence comprehension in the human brain
Sophie Arana a,b,c*, Jacques Pesnot Lerousseau a* and Peter Hagoortb,c

aDepartment of Experimental Psychology, University of Oxford, Oxford, UK; bMax Planck Institute for Psycholinguistics, Nijmegen,
Netherlands; cDonders Institute for Cognition, Brain and Behaviour, Radboud University, Nijmegen, Netherlands

ABSTRACT
Recent artificial neural networks that process natural language achieve unprecedented
performance in tasks requiring sentence-level understanding. As such, they could be interesting
models of the integration of linguistic information in the human brain. We review works that
compare these artificial language models with human brain activity and we assess the extent to
which this approach has improved our understanding of the neural processes involved in
natural language comprehension. Two main results emerge. First, the neural representation of
word meaning aligns with the context-dependent, dense word vectors used by the artificial
neural networks. Second, the processing hierarchy that emerges within artificial neural networks
broadly matches the brain, but is surprisingly inconsistent across studies. We discuss current
challenges in establishing artificial neural networks as process models of natural language
comprehension. We suggest exploiting the highly structured representational geometry of
artificial neural networks when mapping representations to brain data.
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1. New analytic tools have enabled the study
of brain activity during sentence
comprehension

Recent advances in natural language processing, i.e. the
automatic analysis of natural language by computer
algorithms, have greatly impacted the study of brain
activity during sentence comprehension. Two main
innovations are at the core of these successes: represent-
ing words as low-dimensional dense vectors and learn-
ing such representations with artificial neural networks
trained on large text corpora (Goldberg, 2016).

1.1. Learning word vectors with artificial neural
networks

In order to build natural language processing algor-
ithms, it is necessary to represent language units, such
as words, as numbers. This operation is called embed-
ding. To illustrate this point, let’s take a toy language
composed of five words: King, Queen, Man, Woman,
Men. A naive embedding would be to convert each
word as a one-hot vector, where each word is its own
dimension: King is the first dimension [1, 0, 0, 0, 0],
Queen is the second dimension [0, 1, 0, 0, 0], Man is

the third dimension [0, 0, 1, 0, 0], and so on. Such an
embedding has two disadvantages. First, it is memory
inefficient, as the vector size increases quickly with the
size of the vocabulary: in our example, n dimensions
encode at most n words. Second, there is no similarity
structure between the words as each word is completely
independent from the others, which is a problem for
generalisation purposes, such as learning a new word
and quickly inferring its meaning based on similar
words in the vocabulary.

A better implementation is to use distributed encod-
ing (Harris, 1954; Hinton, 1986; Rumelhart et al., 1986),
i.e. to construct the representation of each word as a
set of multiple features. Distributed encoding is usually
thought to represent semantic features rather than
visual, orthographic, auditory or phonological properties
of words, although in principle any feature could be rep-
resented through a distributed code. In our toy example,
each word can be represented as a 3-dimensional vector
with “gender” as the first dimension (0: male, 1: female),
“number” as the second dimension (0: singular; 1: plural)
and “regalness” as the third dimension: King is [0, 0, 1],
Queen is [1, 0, 1], Male is [0, 0, 0], Woman is [1, 0, 0]
and Men is [0, 1, 0]. Such a distributed representation
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has multiple advantages. First, it is memory efficient: in
our example, n dimensions encode at most 2n words.
Its dimensionality is thus much lower than the naive
embedding one, hence the term “low-dimensional”. In
practice, the number of dimensions in recent models
ranges from about 50 to a few hundred. Second, it
allows performing semantically meaningful operations
on vectors (Mikolov et al., 2013): the operation King +
Woman = [0, 0, 1] + [1, 0, 0] = [1, 0, 1] =Queen. Third, it
facilitates generalisation by reusing the same features
to encode new words and thus infer their similarity to
the other words: in our toy language, the new word
Kings would be encoded as [0, 1, 1], which happens to
be close to King ([0, 0, 1]) and far from Woman ([1, 0,
0]). On a side note, this inference will only be meaningful
if the initial distributed representation is meaningful. For
example here, “gender” as an input variable has been
imposed by hand.

Moving from representing each word as a unique
dimension to representing them instead as dense
vectors has been described as “perhaps the biggest con-
ceptual jump” in natural language processing (Goldberg,
2016). Nowadays, nearly all tools developed in natural
language processing use such distributed vector rep-
resentations of individual words. Recent embeddings
typically consist of several hundreds of dimensions, for
example 640 in Mikolov et al. (2013) or 512 in Vaswani
et al. (2017). Contrary to our toy example, the dimen-
sions of these embeddings are not easily interpretable
as they do not correspond to salient features, such as
gender.

1.1.1 Learning word embedding by training
artificial neural networks on large text corpora
Finding an optimal low-dimensional word embedding is
a difficult problem, especially when the vectors have
several hundreds of dimensions. The current approach
in natural language processing is to use large text
corpora to learn the appropriate embeddings. This
relies on the distributional hypothesis: the fact that
semantic features that distinguish the meanings of
words are reflected in the statistics of their use within
large text corpora (Firth, 1957; Mikolov et al., 2013;
Mitchell et al., 2008), i.e. that words that have a close
semantic proximity tend to appear within similar con-
texts. This means that the embeddings do not use the
statistics of the world nor the co-occurrence of words
and real-world situations directly but only through the
statistics internal to the text corpora. Learning these stat-
istics is typically done by artificial neural networks and
deep learning techniques (LeCun et al., 2015). These
artificial neural networks are composed of artificial
neurons that realise simple operations on inputs. The

artificial neurons are organised in layers. In recurrent
architectures, the output of each layer is fed back as
input to the same layer at the next time step. In serial
architectures, such as transformers, the output of the
artificial neurons of one layer are the input to the artifi-
cial neurons of the next layer. Note that “layer” does not
refer to the six cortical layers of the brain but rather to
the stage of an artificial neuron in this series of pools
of artificial neurons. Two main artificial neural network
architectures dominate the field: recurrent neural net-
works and transformers.

First, recurrent neural networks have been exten-
sively used in natural language processing. They
process input sequences one element at a time, while
maintaining a separate state vector that contains the
information about previous context. The most used
architecture is the long short-term memory unit (LSTM)
(Mikolov et al., 2010; Sundermeyer et al., 2012). In such
architectures, the input layer is a one-hot encoding
vector that corresponds to the word that is presented.
The next layers are composed of LSTM units. Each
LSTM unit is itself composed of three gates that
control which information of the hidden state vector is
going to be forgotten, maintained and integrated to
the input (Hochreiter & Schmidhuber, 1997). This
allows for flexible gating of information to either main-
tain it over a long period of time or quickly forget it
when necessary. Over training, the network learns to
build and maintain the best possible state vector, i.e.
the vector that captures the most information about
the sentence. Depending on the task it has been
trained on, the network can output next-word predic-
tions, next-sentence selections and sentence topic pre-
dictions (Ghosh et al., 2016).

Second, the transformer architecture (Vaswani et al.,
2017) is currently the state of the art for natural language
processing. Contrary to recurrent neural networks that
process sequences one element at a time, transformers
process whole sequences in parallel. In the input layer,
each word of the sentence is fed to the network as a
one-hot vector. Each word is then independently
embedded by a first embedding layer. This produces a
context-free embedding of the words. A positional
encoding vector is then added to the context-free
embedding of each word so that the model has infor-
mation about the word order. Then, transformers
consist of a series of embedding layers, where the
embedding of each word is mixed with the embeddings
of the surrounding words to produce a context-depen-
dent embedding. As a result, the first embedding layer
is a context-free embedding of each word while the
last embedding layer provides a context-dependent
embedding of each word. The central component of
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each embedding layer is the “attention head” that con-
trols the amount of mixing between word embeddings
and the precise locus of this mixing through a “self-
attention” mechanism. It should be noted that “atten-
tion” only refers vaguely to the usual notion of attention
in psychology and the reader should treat them as two
different concepts. More specifically, an attention head
proceeds in three steps. (1) First, the attention head
computes three projections of each word, called the
“query”, “key” and “value” vectors. This projection is
learned by the model during training. (2) Second, for
each word, the attention head computes a similarity
score between the “query” vector of the word and the
“key” vectors of all words, by taking the dot product of
each vector pair. This gives a value that indicates to
what extent the “key” of each word matches the
“query” of each word. (3) Third, the attention head com-
putes a weighted average of the “value” vectors for each
word, where the weight is equal to the similarity score
computed above. This weighted average is the new
embedding of each word, ready to be passed to the
next layer for another round of mixing.

To illustrate further, let’s take the example sentence “I
put my cash in the bank”. The interest of this example is
the polysemic word “bank”, which can refer to a financial
institution or to land alongside a river. To disambiguate
its meaning, an attention head might produce a “query”
vector for “bank” that has high values for features like
“institution-related”, “money-related”, “river-related”,
“lake-related” (in plain text, the attention head asks:
does anyone in the sentence know if we are talking
about money-related stuff or about river-related stuff?).
The “key” vector of “cash”will probably have a high simi-
larity score with the “query” vector because it has a high
“money-related” feature value (in plain text, the word
“cash” responds: yes, I have information to know that
we are talking about money-related stuff and not river-
related stuff!). The attention head will finally mix the
embedding of the word “bank” with the embedding of
the word “cash”. As a result, the “river-related” feature
disappears and the “money-related” feature is reinforced
in the context-dependent embedding of the word
“bank”. To sum up, one can think of an attention head
as a series of computations that project the words in a
subspace, measure the similarity between each word
in that subspace, and mix the representation of the
words according to this similarity measure. In practice,
the features of the word vector are not built-in but
rather learned through training, and contrary to our
example they are usually not easily determined in any
interpretable way. Further, transformers are composed
of multiple attention heads in each layer and also
involve further mixing strategies. Transformers are

usually trained to predict a masked word in a sentence
or a paragraph. The most common transformer models
that have been used in neuroscience are BERT (Devlin
et al., 2018), GPT-2 (Radford et al., 2019) and GPT-3
(Brown et al., 2020).

Learning word embeddings on large text corpora by
means of artificial neural networks has produced excel-
lent results in a variety of natural language processing
tasks, such as question answering, translation or text
summarisation. Further, this approach has provided
new models of language processing for cognitive neu-
roscientists interested in how the brain processes
language. Indeed, these models have two advantages.
First, they are usually trained end-to-end with almost
no a priori knowledge on how language works. This is
an advantage because they do not depend on linguistic
theories and thus provide more objective measures on
language. Further, this releases additional assumptions
concerning the fact that humans are born with in-built
knowledge of the language structure. Second, they can
process natural language, thus providing tools to
analyse human behaviour and brain activity during nat-
uralistic tasks. As a consequence, a multitude of methods
to compare the brain with these language models have
been developed.

1.2. Comparing brain activity with artificial
neural networks

The most common paradigm involves presenting the
same words or sentences to human participants and to
the models. Three approaches have been used to then
compare human behaviour and brain activity with the
models: directly correlating brain activity with the
model’s activity, comparing behaviour and brain activity
with metrics derived from the model’s outputs, and
comparing the geometry of the representations
extracted from the brain activity and the model’s
activity. Each approach involves different assumptions
and can lead to different conclusions concerning the
link between the brain activity and the models.

1.2.1 Comparison of brain activity with the model’s
activity
The first approach is to directly compare the patterns of
brain activity during the presentation of words to the
word embeddings of the model. The assumption is
that if the brain is using the same embedding strategy
as the model, then one should be able to build a
mapping between the brain activity and the word
embeddings. Usually, a further assumption is that this
mapping is linear and can thus be approximated by a
linear regression.
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The linear regression approach was employed for the
first time by Mitchell and collaborators in 2008 (Mitchell
et al., 2008). The authors measured brain activity during
the presentation of single words using fMRI. The activity
in each voxel was then decomposed as a weighted sum
of the corresponding word embedding. The mapping
between the word embedding and each voxel was
learned by a linear regression and was used to predict
brain responses to words that were not used during
training. Geometrically, a linear regression can be
thought of as a hyperplane. In this context, the hyper-
plane is a tilted flat surface in the space whose dimen-
sions correspond to the embedding space dimensions
plus one dimension corresponding to the brain
response. The brain response associated with a given
word can be described as a projection of the word in
the embedding space on a line in the tilted direction
of the hyperplane. Therefore, the success of the linear
regression in one voxel implies that the activity in this
voxel is correlated to the projection of the words onto
a line in the embedding space. This linear mapping
approach can be equally applied at the sentence level
by replacing the word embedding with an embeddings
vector for the integrated sentence meaning. Using sen-
tence-level embeddings, recent works have extended
this approach to other regression techniques, such as
linear ridge regression (Caucheteux & King, 2022),
other models, such as GPT-2 (Goldstein et al., 2022a &
b), and other brain recording modalities, such as MEG
(Wehbe et al., 2014b) or ECoG (Goldstein et al., 2022).
These works are reviewed in detail in the next part.

1.2.2 Inferring identity between brain and models
Not every comparison method is well suited to establish
correspondence between a model and the brain. A
single correlation between one model and the brain
data, as is typically done using the regression approach,
provides limited information. Indeed, the level of expla-
nation at which one can infer identity based on model
fits is difficult, because similar functions do not auto-
matically imply similar realisations (Guest & Martin,
2021; Jonas & Kording, 2017). A cautious approach is
usually to refrain from inferences concerning expla-
nation at the lowest levels, like those about detailed
implementation. Further, inferences are most meaning-
ful when based on a contrastive approach, comparing
model fits between multiple models that differ in one
aspect.

1.2.3 Overfitting
Any work that compares large artificial neural networks
and brain data using regression techniques faces the
issue of overfitting. This is partly because the number

of trials used as training data for the regression is
usually much smaller than the number of parameters
to train. In these conditions, even a bad model could
learn the idiosyncratic characteristics of the training set
and artificially fit the training data. To reduce this
issue, standardised methodological tools have been
developed. First, regularisation methods, such as ridge
regression (Tikhonov, 1963) or lasso regression (Tibshir-
ani, 1996), penalise the regression for large parameters.
This biases the regression towards sparse sets of par-
ameters, i.e. sets with a low number of non-zero par-
ameters. Such sets are less prone to overfitting.
Second, cross-validation reduces overfitting by using
independent datasets for training and testing the
models fit to the brain.

1.2.4 Comparison of brain activity with metrics
derived from the model
The second approach is to compare brain activity with
metrics derived from the model’s outputs. The main
assumption is that if the brain and the models share
similar computations, they will produce similar
outputs. This does not assume that the brain and the
model rely on similar representations, but rather that
they produce the same outputs or that they converge
toward the same results. The most common method is
to compare the surprise of the model and the brain
activity. Surprise is a quantity developed in the field of
information theory (Shannon, 1948) to measure the
degree of unexpectedness of a stimulus. It has a
precise mathematical formulation: -log2P(w) where P
(w) is the probability of occurrence of the word w. It
nonetheless corresponds to the intuitive notion of sur-
prise, i.e. it is low when a word is highly expected by
the model and high when a word is highly unexpected
by the model. A further usual assumption is that the
brain activity scales with the surprise, such that highly
surprising words elicit large brain activity while highly
unsurprising words elicit small brain activity (Mars
et al., 2008).

Information-based surprise has been used in a recent
paper by Heilbron and collaborators (Heilbron et al.,
2022). The authors compute the surprise of a language
model, GPT-2, relative to different linguistic levels,
namely syntactic, phonemic and semantic. Syntactic sur-
prise refers to the extent to which the model expects the
syntactic category of each word. Similarly, phonemic
and semantic surprise correspond to the extent to
which the model expects the phonemes and the seman-
tic features respectively. The authors then correlate the
brain activity measured by EEG and MEG with the sur-
prise computed from the model with respect to the
different linguistic levels to reveal the location and
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time windows during which the brain processes each lin-
guistic level. Other recent works have used this method
with other brain imaging, such as fMRI (Brennan et al.,
2020; Schmitt et al., 2021), and with other output
measures, such as entropy (Donhauser & Baillet, 2020).

Another related form of surprise that has been shown
to modulate the brain’s responses is Bayesian surprise.,
i.e. how much a model’s belief changes based on an
incoming word (Itti & Baldi, 2009). In the context of sen-
tence comprehension, this has been demonstrated for
example by Rabovsky and collaborators’s sentence
Gestalt model, a recurrent neural network architecture
trained on sentence comprehension. The word-
induced update in the hidden unit activations of the
network came to reflect the update of a probabilistic
sentence representation. The magnitude of this update
was then shown to predict amplitude modulations in
neural activity across tasks (Rabovsky et al., 2018). To
our knowledge, the Bayesian surprise metric has not
yet been used in conjunction with large-scale language
models as a comparison for human brain data (but see
Kumar, Goldstein et al., 2022 for predicting human nar-
rative segmentation).

1.2.5 Comparison of the geometry of the
representations
The third approach is to compare the geometry of the
representations of the words computed from the
model and from the brain activity. Unlike the two pre-
vious approaches, this method does not necessarily
assume a linear relationship between the brain and
the model. Geometry is usually inferred through rep-
resentational similarity analysis (Diedrichsen & Krieges-
korte, 2017; Kriegeskorte et al., 2008), which consists in
computing the matrix of dissimilarities between activity
patterns elicited by each word. A matrix of dissimilarities
is obtained for the brain activity and for the model. The
test then consists in comparing both matrices, usually by
calculating rank-based correlations.

This approach has been used to compare the evol-
ution of the semantic representation during the sen-
tence presentation in both a BERT model and brain
activity recorded by EEG and MEG (Lyu et al., 2021).
Overall, it has been less used to study sentence compre-
hension compared to the two previous ones. This is sur-
prising given that, at first glance, the estimation of the
representational geometries is less computationally
demanding and requires less assumptions about the dis-
tribution of the data than the linear encoding approach
(Diedrichsen & Kriegeskorte, 2017). One reason for the
lack of research using representational similarity analysis
is the difficulty to build a reliable dissimilarity matrix in
the context of natural language comprehension. In

natural language, most of the words are not repeated
over the course of a text. This means that most words
correspond to unique trials, leading to very large and
noisy dissimilarity matrices. Nonetheless, it should be
noted that, in practice, linear encoding models and rep-
resentational similarity analysis leads to similar results
(Thirion et al., 2015) (Figure 1).

1.2.6 Mapping detailed model embeddings onto
coarse brain measures
Artificial neural networks usually learn separate embed-
dings for each word in the sentence rather than one
fixed size sentence embedding. This causes a challenge
whenever a mapping onto a modality with coarser resol-
ution is attempted. For example, the hemodynamic
response recorded in fMRI data unfolds over several
seconds and will inevitably span multiple words given
naturalistic stimulus presentation. There are multiple
ways to circumvent this issue.

When mapping language models onto fMRI data,
most researchers have relied on averaging or concate-
nating word embeddings to match the resolution of
the neural data (Anderson et al., 2021; Toneva et al.,
2020, 2022; Wehbe et al., 2014). In recent transformer
models, contextualised embeddings aggregate infor-
mation on preceding word meaning, which makes it
possible to simply rely on individual embeddings from
the final hidden layer, such as the sentence final word
(Schrimpf et al., 2021). Another approach specific to pre-
trained BERT transformers is to use an additional token
embedding as an aggregate sentence embedding.
BERT transformer models currently available are com-
monly trained to infer whether one sentence is a plaus-
ible continuation of another. This sentence classification
task requires a pair of sentences as input to the model.
To indicate the separation of a potential second sen-
tence in the input, BERT requires each input sentence
to begin with the meaningless special token [CLS]. Just
like every word, the embedding at the special token
[CLS] position is getting increasingly mixed with the
embeddings of the subsequent words in higher-level
layers of the model. As a result, the embedding at the
[CLS] position reflects an aggregate of the embedding
of the words that constitutes the sentence. Both the
[CLS] token’s embedding or an aggregate measure of
all word embeddings through max-pooling have been
used to model human data on sentence-level classifi-
cation tasks such as judging semantic textual similarity
or sentiment analysis (Devlin et al., 2018; Reimers & Gur-
evych, 2019). However, token-specific embeddings often
do not reach maximal performance without further fine-
tuning (Devlin et al., 2018; Reimers & Gurevych, 2019).
Overall, the choice of how to integrate sentence
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embeddings is rarely explicitly motivated and only few
papers have directly compared how different
approaches affect a model’s fit to brain data.

2. The brain represents words as low-
dimensional dense vectors in a context-
dependent fashion

The first contribution of the combined development of
models of natural language processing and methods
to compare the brain activity with these models is a
precise investigation of the representational code of
the words’ meaning during sentence comprehension.

2.1. Word meaning representation as low-
dimensional dense vectors

Hypotheses about the neural representation of words
can be placed on a spectrum. On one side, the word rep-
resentations could be localised, with each word being
encoded by a specific population of neurons and no
overlap between different words. On the other side,
the representation of the words could be distributed,
with all words being encoded in the same population
of neurons but with different patterns for each word.
This second hypothesis has received a lot of attention,
notably because of the success of the distributed rep-
resentation in the field of natural language processing.

As a consequence, a lot of work has been done to
compare the dense vector representation used in
natural language processing to the brain activity.

As previously cited, the work of Mitchell and collabor-
ators in 2008 (Mitchell et al., 2008) was the first to test the
distributed representation hypothesis in the human brain.
In this study, the authors predicted fMRI activity using a
linear combination of the vector representation of the
presented words. A strong implication of a successful
linear mapping is that if the weights of the linear
regression are diverse enough across all voxels and if
the number of voxels is large enough, the brain activity
potentially spans the entire embedding space of the
model. This would imply that the brain represented
words in a similar fashion as the model, i.e. as low-dimen-
sional dense vectors distributed in space. Such a rep-
resentation would allow for interpolation, which is
incompatible with a naive embedding, with one feature
for every word. However, note that this implication is
only probable and not guaranteed. Indeed, if the words
in the embedding space are linearly separable from one
another, a similar approach would succeed even if the
brain used the naive embedding, with one feature for
each word. Nonetheless, this scenario is improbable,
because there are many more words than dimensions
in the embedding space and thus many more configur-
ations where most words are not linearly separable than
configurations where they are.

Figure 1. Overview of the modelling and multivariate analytic tools to study brain activity during speech comprehension. Brain
activity is recorded during the presentation of single words or sentences. Artificial neural networks trained on large text corpora,
such as LSTM or transformer networks, are used as models of natural language processing: their activity is also recorded during
the presentation of the same single words or sentences. Three approaches have been used to then compare brain activity with
the models. 1. Directly correlate brain activity with the model’s activity, for example with linear (ridge) regression. 2. Compare behav-
iour and brain activity with metrics derived from the model’s outputs, such as surprise values. 3. Compare the geometry of the rep-
resentations extracted from the brain activity and the model’s activity by comparing the representational dissimilarity matrices (RDM).
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Following this proof of concept, this result has been
replicated and extended in later works. First, this result
has been replicated using complete sentences rather
than single words (Anderson et al., 2019; Huth et al.,
2016; Millet & King, 2021; Millet et al., 2022; Pereira
et al., 2018; Wehbe et al., 2014). Second, the distributed
representation has been shown to be at least partly
stable across individuals, as the spatial localisation of
the linear mapping between the word embedding and
the fMRI data appears to be somewhat overlapping
across individuals (Huth et al., 2016). Third, it has been
shown that the distributed representation of the seman-
tic information is encoded in different cortical areas and
is independent from non-semantic features of the
words. During visual stimulation, the encoding is inde-
pendent from the visual appearance of the words
(Wehbe et al., 2014). Similarly, during auditory stimu-
lation, the encoding is independent from the spectral
and articulatory features of words (de Heer et al.,
2017). The encoding is also independent from the syn-
tactic role of a word in the sentence (Wehbe et al.,
2014). Indeed, multiple cortical regions represent
semantic information about the words irrespective of
their grammatical role, such as grammatical subject or
object (Anderson et al., 2019). Finally, the encoding of
semantic information has been proposed to be partly
modality independent, as the geometry of represen-
tation of visually presented words was correlated to
those of auditorily presented words in the left pars trian-
gularis (Liuzzi et al., 2017). Recently, Popham and collab-
orators have shown that the semantic representations of
images and speech are aligned at the border of the
visual cortex (Popham et al., 2021).

Most of these studies used linear regression to
compare fMRI single voxel activity to the vector rep-
resentation of the words. However, this minimally
proves that at least one direction in the embedding
space is encoded in the brain. One could argue that
the brain may represent the language model’s embed-
ding space only partly but not in its entirety. In the
most extreme scenario, one could even argue that the
voxels are actually all responding to the same single
direction in the embedding space, and thus not at all
making use of a dense low-dimensional representation
of the words. In this case, an encoding model would
have good performances at predicting brain activity
from the word embeddings but a decoding model
would have poor performances at predicting the word
embeddings from brain activity. To address this criticism,
Goldstein and collaborators have successfully shown
that information in the word embedding can be used
to predict brain activity but also that brain activity can
be used to predict the word embeddings (Goldstein

et al., 2022a; Goldstein et al., 2022b). The linear
mapping between the brain and the neural network per-
formed relatively well in both directions, with a cross-
validated correlation score of 0.15 for the encoding
and a prediction score of 0.70 for the decoding in the
IFG. The good performances in the two directions with
the same linear model suggest that the brain represen-
tations are not restricted to a small subset of the embed-
ding space used by the natural language processing
models. Indeed, if the geometric relationships between
words were only very partly overlapping between the
brain and the neural networks, such good cross-vali-
dated performances would be unlikely. Another
approach put forward to overcome the pitfalls of a uni-
directional correlation measure when comparing
models and brains is the “direct interface” test, which
consists of evaluating model performance after directly
using the mapped brain activity in place of a single
layer activation in the neural network. This approach
additionally ensures that any similarity in encoding
between brain and networks are functionally relevant
and not just driven by spurious variance in the signal.
It has been used in the context of object recognition
in vision (Sexton & Love, 2022), but never in language
comprehension.

2.2. Word meaning representation in context

The previous part focused on models that use context-
free embeddings, i.e. fixed word vectors that do not
change depending on the surrounding context.
However, context helps to disambiguate the meaning
of words and to assign them the correct semantic fea-
tures. The polysemic word “bank” refers to a financial
institution in the context A: “I put my cash in the
bank”, but it refers to a landscape in context B: “I
walked by the river bank”. Consequently, the word
vector representation of the word “bank” should not
be the same in the two contexts. The semantic features
of “bank” in context A should be related to money and
finance, while the semantic features of “bank” in
context B should be related to river and walking. Even
for words with unambiguous word sense, context
often directs attention to a subset of semantic features
of a word’s meaning. For example, in a phrase like
“throwing a banana”, features relating to the colour or
taste of a banana are less important than its shape or
weight.

The first study using contextualised word embedding
was conducted by Wehbe and collaborators (2014). The
authors used a recurrent neural architecture to generate
two vectors for each word of the sentence, one rep-
resentation of the context and one contextualised
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embedding of the word. Based on these two vectors
they predicted MEG activity before, during and after
the presentation of each word using a linear regression.
Their results show that before the presentation of a word
in a sentence context, the context representation pre-
dicts MEG activity. Shortly after the presentation of the
word, the contextualised word representation predicts
MEG activity. Finally, after the presentation of the
word, the updated representation of the context pre-
dicts MEG activity. This can be interpreted as evidence
that the brain represents the context as a latent variable,
and integrates the meaning of the word to this context
representation to produce a context-dependent embed-
ding (Wehbe et al., 2014).

Further, it has been shown and replicated multiple
times that contextualised embeddings are better predic-
tors of brain activity than context-free ones in large parts
of the language network. This effect has been shown in
EEG and MEG recordings during the presentation of sen-
tences with a verb-object noun relationship (Lyu et al.,
2019) and in fMRI and MEG recordings during the pres-
entation of narratives (Caucheteux & King, 2022; Toneva
& Wehbe, 2019). In a recent article, Schrimpf and collab-
orators compared a large number of models, including
models that take context into account or not, to brain
data recorded during the presentation of narratives.
Contextual models were systematically associated with
better fit to the brain data compared to context-free
models, for different datasets and different recording
modalities, including fMRI, MEG and ECoG (Schrimpf
et al., 2021). One surprising result is that despite the
apparent similarity between the brain and LSTM neural
networks in terms of stimulus presentation (serial pres-
entation) and computations (recurrent neural architec-
tures), transformers are better predictors of brain
activity. More generally, the performance of the neural
networks in language tasks is a key predictor of their
ability to match brain activity (Caucheteux & King,
2022; Schrimpf et al., 2021). Predictability of brain
activity has been interpreted by some as suggesting a
“convergence” in processes between models and the
brain. This inference has also been criticised, however,
because measures of predictive power are often aver-
aged across inputs that vary in a large number of
feature dimensions, therefore limiting its explanatory
power (Bowers et al., 2022).

What explains the better fit of the contextualised rep-
resentation? The advantage of contextualised represen-
tation could be explained by contextual information
improving word embeddings, for example because poly-
semic words are disambiguated. It could also be
explained by the fact that the contextualised embed-
ding contains information about previous words which

could be used to account for variance in brain activity
related to those previous words. When systematically
varying the amount of context that is used by the recur-
rent language model, the better fit of the contextualised
representation to the brain was reported to be due to
both of those factors simultaneously (Jain & Huth,
2018). Also, words presented with more context were
associated with stronger fMRI activity and better encod-
ing (Deniz et al., 2021).

Finally, several artificial neural networks have been
shown to capture sentence meaning beyond a simple
“sum of its parts”. As models of brain activity, they out-
perform alternative models that rely on simpler oper-
ations such as point-wise averages or concatenation of
context-free word embeddings, especially when dis-
tinguishing neural representations evoked by closely
related sentences (Anderson et al., 2021; Sun et al.,
2019). Moreover, the contextualised embeddings of
recent language models seem to capture semantic infor-
mation beyond individual word meaning, emerging
through coactivation with a combination of words,
such as activating aspects of the verb “reading” when
hearing the phrase “the girl began the book” or
“eating” for the phrase “the goat finished the book”
(Toneva et al., 2022).

3. The processing hierarchy within artificial
and neural language models

It appears from the literature summarised in the pre-
vious part that words are encoded in distributed
neural activation patterns that are well captured by
artificial language models. However, the mere
mapping between natural language processing models
and neural representations is not considered the end
goal of this line of research. Through such a mapping,
the hierarchical architecture of artificial neural networks
can reveal a parallel functional hierarchy in the brain,
similar to what has been demonstrated for the domain
of vision (Cichy et al., 2016; Eickenberg et al., 2017;
Güçlü & van Gerven, 2015).

3.1. Contrastive approach to localise brain
networks involved in contextualisation processes

From decades of neuroimaging research using mainly
univariate analysis methods, the language community
has collected a wealth of data and formulated detailed
hypotheses about the functional involvement of brain
regions during sentence processing. We know that the
left posterior and middle temporal cortex activates
early after word onset and in a modality-independent
manner (Arana et al., 2020) with its activation being
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strongly time-locked (Hultén et al., 2019). This pattern
suggests a largely lexicalised, bottom-up process and
hence this area is thought to encode lexical represen-
tations including lexicalised syntactic representations
in posterior parts (Matchin, Brodbeck et al., 2019).
More anterior regions of the cortex, including the
anterior temporal lobe as well as the inferior frontal
gyrus, are usually activated only subsequently but
sustain activation for longer (Arana et al., 2020; Brodbeck
et al., 2018). Moreover, the inferior frontal gyrus has
been shown to engage in functional coupling with the
temporal cortex, likely enabling integration of multiple
words over longer time scales (Baggio & Hagoort,
2011; Hultén et al., 2019; Schoffelen et al., 2017). This
network of frontal and posterior temporal regions is
also consistently activated during tasks requiring seman-
tic control (Solomon & Thompson-Schill, 2020), with
damage to both regions leading to similarly impaired
semantic access in a variety of tasks including concep-
tual combination (Jackson, 2021; Jefferies, 2013;
Jefferies & Lambon Ralph, 2006). The anterior temporal
lobe (ATL) has been suggested to be sensitive to both
syntactic and semantic features of a sentence (Rogalsky
& Hickok, 2009) and to play a role in conceptual combi-
nation (Pylkkänen, 2019; Zhang & Pylkkänen, 2015). In
studies contrasting lists, phrases and sentences, graded
effects in ATL have been reported in response to increas-
ingly larger contextual units (Matchin et al., 2019). At the
same time, evidence from neuropsychological disorders
and simulation studies suggest a causal role for ATL
already at the single-word level, specifically for tasks
requiring semantic memory such as picture naming
(Lambon Ralph et al., 2017; Shimotake et al., 2015).
ATL activation is thus unlikely to be restricted to combi-
natorial processing. Attempts to reconcile the discrepant
findings regarding ATL function have pointed out a
common sensitivity to conceptual specificity during
both single and multi word processing (Westerlund &
Pylkkänen, 2014; Zhang & Pylkkänen, 2015). Finally, the
temporal parietal junction, including angular gyrus,
increases in activation at later time points in the sen-
tence (Matchin, Brodbeck, et al., 2019). Although the
functional role of angular gyrus in sentence processing
is still debated, there is now accumulating evidence for
its involvement in higher-level event-related processing
(Binder & Desai, 2011; Branzi et al., 2021; Leonardelli &
Fairhall, 2022; Matchin et al., 2019).

The univariate results summarised above are based
on either contrastive designs such as comparing lists
and sentences, minimal word pairs with compositional
and non compositional meaning or on regressors that
quantify structural complexity according to linguistic
parsing models. In contrast, deep neural networks can

model hierarchical processing stages based on naturalis-
tic language data without the need to rely on engin-
eered task designs. Their hierarchical architecture is
well-suited for capturing the gradient of contextualisa-
tion seen in the brain. Exploring the hierarchical gradi-
ents that emerge in artificial language models may
hence provide complementary insights into the compu-
tational hierarchy of the brain.

3.2. A gradient of contextualisation

As detailed in the previous part, context-dependent rep-
resentations of the words have been shown to better
model human brain data than context-free word embed-
dings. Moreover, studies using the linear mapping
approach in a spatially resolved manner have shown
that different timescales of contextualisation may be
associated with neural activity in distinct brain areas.
This approach involves computing the voxel-wise fit for
each voxel individually or group of voxels and comparing
the fit across several language models that encode
varying degrees of context. While multiple studies
report a spatially varying gradient of contextualisation
in the brain (Antonello et al., 2021; Jain & Huth, 2018;
Qian et al., 2016; Schmitt et al., 2021; Toneva & Wehbe,
2019), they vary in terms of the exact mapping of this gra-
dient onto brain areas. While some find highly contextua-
lised representations to be restricted to anterior temporal
lobe and posterior temporal lobe (Toneva et al., 2022),
other findings suggest an inferior-superior gradient span-
ning temporal and inferior parietal cortex, emphasising
angular gyrus and precuneus as processing information
at longer contextual windows (Antonello et al., 2021;
Schmitt et al., 2021). Again others suggest a combination
of all of the above (Caucheteux & King, 2022).

Even though the deep learning models have the
means to apply continuous measures of contextual rich-
ness, their conclusions with respect to linguistic function
remain rather coarse in comparison to the collective
insights stemming from univariate studies. The main dis-
tinction relies on a binary split into brain areas preferring
short or no context and brain areas preferring long con-
texts. It remains to be explored whether the observed
differences in neural representations are sufficiently
explained by this binary categorisation into non-contex-
tual and contextual meaning representations or whether
we can identify intermediate stages of context-depen-
dence. For example, can we identify meaningful
definitions of distinct “chunks” of context, other than
the amount of characters that can distinguish sentences,
paragraphs and narratives?

On top of a rather coarse localisation, the internal dis-
crepancy in the findings makes it hard to reconcile with
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the previous literature. Namely, studies differ on the
precise brain areas that they report, spanning all four
temporal, parietal, frontal and occipital lobes. Several
factors can explain the discrepancies in the reported
brain localisation:

First, the studies use different neuroimaging
methods that have different profiles of spatial and
temporal resolution. For example, MEG has millise-
cond temporal resolution, which is excellent to differ-
entiate the neural response to consecutive words, but
it has a relatively poor spatial resolution, which makes
it inappropriate to differentiate activity in neighbour-
ing neural populations. On the contrary, fMRI has a
poor temporal resolution but millimetre spatial resol-
ution, which makes it less appropriate to differentiate
activity of words presented close in time, as previously
stated.

Second, the fact that successful encoding of brain
activity has been observed in different brain areas
could indicate that the neural code for word meaning
is partly redundant or at least correlated across brain
areas. In a neural network, the activity across successive
layers is correlated because the layers receive input from
one another. Similarly, correlations between brain areas
could emerge from the functional connectivity between
regions, the activity of one area being the input of
another, or from the fact that two areas receive the
same inputs but perform different computations.

Finally, the discrepancies could emerge from the
variety of artificial neural networks that have been
used to study brain activity. These models vary in archi-
tecture, training data, and objective function. It is thus
unclear to what extent these different models produce
different word embeddings, and whether these differ-
ences are important when fitting brain activity. On the
one hand, the brain could represent a common part of
the information shared across all models. On the other
hand, some models might be better than others and
this might depend on the brain areas. For example, it
has been shown that the geometry of word meaning
representations is not the same if it is computed from
behavioural ratings of semantic features or from statisti-
cal information about its linguistic contexts. This differ-
ence is reflected in the brain regions that encode each
representation (Wang et al., 2018). To answer these
questions, a recent paper suggests that the variety of
word embeddings used by the different neural networks
actually span a meta-embedding space, whose main
axes correspond to howmuch and how contextual infor-
mation is taken into account (Antonello et al., 2021). This
suggests that a key difference between neural networks
is how contextual information is integrated in the word
embeddings. This further suggests that contextual

information might be a key feature to explain brain
activity in different brain areas.

3.3. Partition of linguistic representations along
the gradient

A linguistically motivated processing hierarchy assumes
increasingly abstract representations of language input,
spanning phonemes, words, phrases and full narratives.
Such a hierarchy emphasises the qualitative differences
between what type of information is being integrated
and is orthogonal to the previously discussed effect of
context. In fact, context can not only modulate represen-
tations at all linguistic levels but also lead to interactions
between levels. For example, the probability of a word
occurring given its context also shapes predictions
about upcoming phonemes (Heilbron et al., 2020).
Different levels of abstraction, as defined by linguistic
theory, have been shown to be characterised by dissoci-
able neural signatures. To reveal such feature-specific
neural markers, a language model’s predictions can be
used as tools to approximate a given feature’s expected-
ness (Donhauser & Baillet, 2020; Heilbron et al., 2020).

A more direct approach to probe the information
encoded in hidden representations of artificial neural
networks has been taken in the field of natural language
processing. NLP researchers have applied a suite of tools,
such as the analysis of a model’s predictions to specific,
carefully controlled sentences, linear decoders or
probes, representational similarity analysis and model
ablation. These approaches provide evidence that artifi-
cial neural networks trained on language tasks develop a
rich set of both semantic and syntactic knowledge (Reif
et al., 2019; Rogers et al., 2020), including hierarchical
syntactic representations (Manning et al., 2020),
subject-predicate agreement (Gulordava et al., 2018),
syntactic and semantic roles, as well as semantic
relations.

Most recent model architectures consist of multiple
layers of units, with transformations being implemented
in the connections between layers as well as in
additional attention heads. If a hierarchical structure of
representations should emerge from these models it
should therefore necessarily be constrained by their
intrinsic architecture. On aggregate measures, i.e.
across multiple sentences, it appears that different
types of linguistic knowledge can be partly localised to
specific network layers or groups thereof. Specifically,
information regarding syntactic structure seems to inter-
act with the degree of context along a hierarchy of
layers, such that deeper models are able to decode
deeper parsing tree layers (Blevins et al., 2018) and
more high-level combinatorial information, such as
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coreference (Tenney et al., 2019). However, on a sen-
tence-by-sentence basis, it can be noted that any hier-
archical order of layers is dynamically adjusted within
transformer models. For example, higher-level represen-
tations, such as semantic roles, may emerge earlier in the
hierarchy if they are needed to disambiguate infor-
mation at lower levels, such as part-of-speech (Tenney
et al., 2019). This flexibility in how layers can temporarily
reorganise the processing hierarchy essentially replaces
the need for feed-back connections and is possible
due to transformer models selecting relevant context
through self-attention, taking into account both pre-
vious as well as following words.

Several groups have explored whether represen-
tations emerging at different layers of the language
models vary in their capacity to map onto brain data.
One emerging pattern across studies is that middle
layers map better onto brain activity as compared to
early or late output layers (Anderson et al., 2021; Cauche-
teux & King, 2022; Kell et al., 2018; Schrimpf et al., 2021;
Thompson et al., 2021; Toneva & Wehbe, 2019; Wehbe
et al., 2014a). This is interesting, given the machine learn-
ing results reviewed above, which suggest that middle
and late layers encode the most abstract linguistic infor-
mation. Since these layers are closest to the model
output layer, they preserve the information that is
most useful for the downstream linguistic task the
model is trained on (Rogers et al., 2020). This could
also suggest that humans and artificial neural networks
systematically differ in the last layers because their com-
putational goal is different. Indeed, on one side, artificial
neural networks predict the upcoming word using only
information present in the text. On the other side,
humans supposedly infer meaning by further integrat-
ing other sources of information coming from the exter-
nal world through perception and action. It should be
noted, however, that differences in encoding perform-
ance across layers are generally small. For example,
Anderson and colleagues report only a small drop
from 76% to 70% rank performance score (50% signal-
ling chance performance) in predicting brain activity
when using different layers of BERT (Anderson et al.,
2021).

3.4. Changes in representational geometry along
the gradient

Representations emerging in artificial neural networks
are highly structured. While some of this structure is
driven by the architectural configuration of layers as dis-
cussed above, some structure also emerges through
learning and is due to task demands both within layer-
specific embeddings as well as within additional

attention heads. The latter is not always explicitly
taken into account when using those structured rep-
resentations to model brain data.

One meaningful low-dimensional vector represen-
tation of a set of stimuli is one in which those stimuli
that belong to a common abstract category will cluster
together in the embedding space. Such clusters, also
referred to as manifolds, usually span only a subset of
the full embedding space, i.e. they are low-dimensional.
Neural manifolds take on different shapes and dimen-
sionalities in different language models, but some
degree of clustering is observed across all (Cai et al.,
2021). For example, in the context of supervised learning
of visual classification tasks, artificial neural networks
optimise the shape, dimensionality and distance of
manifolds such that task-relevant abstract classes they
represent become linearly separable to the best
degree possible (Cohen et al., 2020). Similarly, a
gradual compression of word manifolds can also be
observed across layers in trained artificial neural net-
works that process natural language. Increased linear
separability across layers has been reported for abstract
classes like part-of-speech, entities and dependency
depth, though, notably, these increases were restricted
to items with ambiguous word sense (Mamou et al.,
2020). The concept of manifolds has great potential
because it describes geometric objects that can be
studied with precise mathematical tools. Characterising
the manifold geometry has inspired a range of metrics
that quantify computationally relevant changes to
neural representations. Data-driven approaches such as
clustering and dimensionality reduction (e.g. decompo-
sition by non-negative matrix factorisation or PCA) are
already being used to gain deeper insights into the
brain’s functional topology (Hamilton et al., 2018;
Schoffelen et al., 2017). Leveraging the concept of
linear separability of manifolds, mean-field capacity
analysis has been developed to quantify subtle charac-
teristics of the representational manifold such as its
radius, dimensionality and centre-correlation (Cohen
et al., 2020).

Furthermore, a separation between semantic features
and relational encoding has been observed in trained
language models. For example, within the low-dimen-
sional context embeddings, semantic and syntactic
information begin to occupy orthogonal subspaces
(Reif et al., 2019). In transformer models, the introduc-
tion of the attention heads and a separate position
encoding for each word further reinforces such a separ-
ation. This allows the model to learn flexible projections
between relational information and semantic features.
Indeed, in fully trained models, at least a subset of the
attention heads seem to encode highly focused
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dependency relations such as determiner-noun or
object-verb relations (Clark, 2013, 2019; Manning et al.,
2020; Reif et al., 2019). Because information encoded
across attention heads is more localised (a single depen-
dency relation is usually represented by just one atten-
tion head) using attention heads as feature models can
reveal a more fine-grained functional mapping across
brain areas (Kumar et al., 2022). The computational prin-
ciples that underlie this factorisation of knowledge in
transformer models have been linked to those in
models of hippocampal functioning (Whittington et al.,
2021) which learn a spatial code that is separate from
the representations of object identity in the environ-
ment. A similar point about separating relational codes
from feature codes has been made regarding the div-
ision of labour of ventral and dorsal streams in scene
perception. Specifically, low-dimensional manifolds
representing relations between objects in a scene
might serve the purpose of enabling transfer of abstract
relational information (Summerfield et al., 2020).

Close inspection of the representational geometry
within artificial neural networks allows us to extract
more specific hypotheses about the underlying compu-
tational principles (Jazayeri & Ostojic, 2021). Having
established that sentence embeddings captured in
current language models broadly map onto neural rep-
resentations in the brain, we can now constrain this
mapping by explicitly taking into account the represen-
tational geometry evident in those language models.
Different stimulus materials might drive clustering of
neural representations in slightly different ways, possibly
leading to the discrepancies in identifying higher-level
“high-context” brain areas reported in section 3.2. The
reported redundancy in the neural code might be a con-
sequence of different brain areas encoding semantic
information that corresponds to distinct subspaces of
the model embedding vector.

4. Future directions towards interpretable
process models of sentence comprehension
in the human brain

The development of artificial neural networks to process
natural language has two advantages. First, they are
trained end-to-end and thus provide objective measures
that do not depend on a priori assumptions concerning
how language is structured and how humans are born
with in-built knowledge of this structure. Second, they
can process natural language and allow the analysis of
brain data in the context of natural language compre-
hension. However, it remains unclear to what extent
these models are to be taken as process models of the
brain, i.e. to what extent they align on an algorithmic

level to the brain and how well the computations that
they realise are similar to the computations that the
brain realises (Barsalou, 2017). We identify three chal-
lenges that need to be solved to make these artificial
neural networks good candidates as true process
models of natural language comprehension in the brain.

4.1. Improving interpretability

Artificial neural networks are sometimes depicted as
“black box models”, because it is hard to describe how
they work at an algorithmic level. However, some mod-
elling approaches are harder to interpret than others.
For example, word embeddings that directly rely on
corpus co-occurrence statistics allow a direct interpret-
ation of the coefficients of the regression, because
each dimension transparently represents the co-occur-
rence with one other word in the vocabulary (Huth
et al., 2016; Popham et al., 2021). For example, a
“river”-specific voxel would have a large weight for
“river” and a low weight for all other dimensions. On
the contrary, learned embeddings such as GPT-2 have
arbitrary dimensions that are not directly interpretable.
Having a more transparent mapping between the algo-
rithmic level and the input stimulus features does not
guarantee high interpretability. In fact, it has been
argued that due to the high-dimensional parameter
space of complex neural systems, the emerging sol-
utions likely rely on very complex nonlinear interactions
between multiple features which might not neatly fit
onto human-interpretable dimensions (Hasson et al.,
2020). Nonetheless, having a transparent mapping
from network representations to stimulus features
seems to be a prerequisite for identifying and
mapping the emerging algorithmic properties onto our
existing cognitive theories as well as brain networks.

On the methods side, some approaches result in more
or less interpretable results. Comparing brain activity with
the model’s using linear regression is the most direct test
but it yields little insight about how the brain works if the
model itself is uninterpretable. Alternatively, using
metrics derived from the model’s output, such as surprise,
can bemore interpretable. For example, Heilbron and col-
laborators computed interpretable metrics from the GPT-
2 activations, namely the phonemic, syntactic and seman-
tic surprise associated with each word (Heilbron et al.,
2020). The linear regression of these metrics on brain
activity yields interpretable results, e.g. here the fact
that the brain is processing phonemic, syntactic and
semantic aspects in a hierarchical way, at different times
and in different locations.

Another way to improve the interpretability of the
results is to analyse the model’s activity prior to using
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it to fit brain activity. This involves having a better quali-
tative understanding of the different clusters of artificial
neurons that compose the model. For example, Cauche-
teux and collaborators (Caucheteux et al., 2021) clus-
tered and analysed the GPT-2 activations to
disentangle syntactic from semantic composition. They
were then able to localise using fMRI the brain regions
selectively associated with syntactic and semantic com-
position, beyond the mere representation of the individ-
ual syntactic or semantic features of each word. We
believe that the field should rely on this general
approach more heavily and could benefit from the
tools that have been developed in the machine learning
community to probe representations within artificial
neural networks, such as linear decoders, represen-
tational similarity analysis and representational geome-
try analysis. Identifying the subcomponents that
compose the artificial neural networks and their
specific role will improve the interpretability and the
insight gained from comparing representations
between models and the brain. Previously, we discussed
the effect of shallow versus deep context in artificial
network representations. Beyond quantifying the
number of words in the context, we are currently
lacking a more qualitative description of what sort of
information might co-vary with context depth. For
example, an intuitive distinction is the difference
between adjacent and nonadjacent dependency
relations. Can we identify further clusters apparent in
artificial neural network representations that are modu-
lated by contextual depth but not routinely taken into
account in current process models?

Finally, a detailed algorithmic understanding might
only be useful if a mapping onto the brain can be estab-
lished later on. Therefore, we do not want to argue that
algorithmic interpretability should be the sole focus
going forward. The complementary objective of improv-
ing the model-to-brain mapping will also be required.
Some attempts at optimising a neural network for its
similarity to the brain have reported increased task per-
formance in both object recognition and NLP tasks
(Kubilius et al., 2019; Toneva & Wehbe, 2019).

4.2. Controlling for the relative contribution of
the model and the linear regression to fit of the
brain activity

The activity of any large language model typically con-
tains a lot of information about the stimuli themselves.
As the brain is responding to those stimuli, the models
might fit the brain simply because the stimuli them-
selves are helpful to predict brain activity. Indeed,
there are two transformations playing a role in the fit:

the non-linear encoding of the stimuli by the model
and the (linear) regression between the model and the
brain. A large part of the predictive power of these
models could actually be due to the linear regression
between the models and the brain activity. Indeed,
with a sufficient number of parameters, the linear
regression can learn the average brain activity of each
trial. One way of measuring the relative contribution of
the model and the linear regression is to use artificial
neural networks with random weights. This equalises
the number of parameters fed to the regression and
the information about the stimuli while removing what
has been learned by the model during training. Several
studies have run this control on fMRI data recorded
during language processing (Kell et al., 2018; Millet
et al., 2022; Millet & King, 2021; Schrimpf et al., 2021).
They confirm that trained models are better than
untrained ones to explain brain activity. This proves
that the predictive power of these models is at least
partly related to the way they actually process the
stimuli. However, there are two major caveats. First,
the added value of trained models over untrained
ones is usually relatively small, ranging from less than
1% to 53% in Schrimpf et al. (2021). Second, it has
been reported that random models with the same archi-
tecture but a different number of layers can yield to
large differences in predictive power, from 0.2 to 0.6
between different versions of GPT (Schrimpf et al.,
2021). This calls for caution when interpreting the
results because it suggests that at least part of the pre-
dictive power of these models is explained by the
linear regression and not necessary because they are
good process models of the human brain.

4.3. Situation model

One last issue is how to place language comprehension
in an integrated comprehension system. Indeed, the
artificial neural networks used as models of language
comprehension in the brain focus exclusively on
language-internal tasks, e.g. next-word prediction
tasks. These models never observe the situation in
which the language is produced, and have no knowl-
edge of the locutor, much less of any covert intentions.
This is different from how humans process language.

First, it is known that the situation model plays an
important role in language comprehension. For
example, it is almost always the case that language
happens in a communicative context, where several
streams of information in addition to the speech signal
itself have to be taken into account. For example, prag-
matic knowledge has to interface with the semantic
information provided by the words. The idea of
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separating pure semantics from pragmatics has been
heavily criticised, for example by Jackendoff (Jackendoff,
2003). Another example are visual cues such as gestures
that accompany speech production. Indeed, it is known
that gestures provide semantic information that is inte-
grated with the speech information to form a coherent
representation (Kelly et al., 2010; Willems et al., 2007).
More generally speaking, the current artificial networks
only exploit the statistics of the texts, whereas another
critical source of information is the statistics of the
world. Indeed, sentence production and comprehension
co-occurs with multiple sources of information, that
includes all kinds of sensory information, such as non-
verbal, visual and auditory percepts, so that word
meaning is actually grounded in the external world.
Such factors have not been taken into account so far
by the artificial neural network modelling approach.
However, it should be noted that there are in principle
no limitations to do so. Indeed, gestures can be fed as
additional input features to the artificial neural networks.
As such, they would provide contextual information that
could be used by the artificial neural networks to
produce better contextualised embeddings of the
words.

Second, another issue concerns the computational
goal of the artificial neural networks that process
natural language, i.e. their objective function. Language
is used by humans to convey information about the
world whereas the sole goal of the artificial neural net-
works is to predict masked words using the surrounding
words. When presented with a descriptive text or
speech, a human listener constructs a representation
of the described situation (Zwaan & Radvansky, 1998).
This representation helps support comprehension and
helps drawing inferences about the situation. Take the
example introduced by McClelland and collaborators
(2020): “John spread jam on some bread. The knife had
been dipped in poison”. A human listener might infer
from this sentence that the jam was spread with a
knife, that poison has been transferred to the bread,
and that if John eats it, he may die (McClelland et al.,
2020). This inference is based on a rich representation
which incorporates prior world knowledge. It is unclear
how to incorporate such knowledge in artificial neural
networks. At the moment, these networks are mostly
trained on masked word prediction tasks and are not
forced to draw inferences on the external world.
Recent attempts include incorporating a long-term
memory integrated representational system (McClelland
et al., 2020), or training language models to recognise or
even generate images (Ramesh et al., 2021). It should
nonetheless be noted that the word embedding pro-
duced by the artificial neural networks actually aligns

to common human knowledge, such as information
about object features like size or shape (Grand et al.,
2022).

5. Conclusion

Artificial neural networks are promising tools to study
brain activity during sentence comprehension. They
generate explicit instantiations of low-dimensional
vector-based representations of words. Once a model
is sufficiently trained on a language corpus, these rep-
resentations can be extracted automatically and
quickly from large natural language stimulus datasets.
They therefore facilitate the analysis of neuroimaging
data recorded during natural language comprehension
of sentences and narratives. Their success in predicting
brain data suggests that these representations can
indeed be useful models of sentence-level meaning rep-
resentations. Furthermore, the representations gener-
ated by the most recent language models are
modulated by features relevant to sentence processing,
such as context depth.

Nonetheless, the insights into the functional hierar-
chy of the brain network for language that deep learning
models provide are currently very coarse, which makes it
difficult to complement current hypotheses about cog-
nitive process models. The main limitations are their
interpretability and their ability to be good process
models of the brain. In particular, most models are
hard to interpret, they consist of word embedding
with arbitrary dimensions that do not map onto simple
concepts or simple syntactic roles. Furthermore, most
models are trained on next-word prediction tasks,
without any reference to the external world and
without a communicative function. It is also currently
unclear to what extent the predictive power is explained
by the regression only and not so much by the ability of
the model to capture brain processes.

In order to make the most out of these models, we
suggest that future directions could involve: (1) more
constrained tests when directly comparing models acti-
vation and brain activity using regression methods, (2)
better descriptions of the model’s internal represen-
tations, i.e. what information is clustered and what infor-
mation is factorised. One good starting point would be
to clarify which aspects of a sentence’s meaning is
modulated by context, beyond a binary dichotomy
between single words and words in context. Here,
language researchers can borrow techniques from the
machine learning literature on deep learning models,
where multiple analysis techniques have been explored
to provide insight into the inner workings of recent deep
language models.
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